Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Angew Chem Int Ed Engl ; : e202403508, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647357

RESUMO

MXenes have extensive applications due to their different properties determined by intrinsic structures and various functional groups. Exploring different functional groups of MXenes leads to improved performance or potential applications. In this work, we prepared new Ti3C2PBrx (x=0.4-0.6) MXene with phosphorus functional groups (-P) through a two-step gas-phase reaction. The acquisition of -P is achieved by replacing bromine functional groups (-Br) of Ti3C2Br2 in the phosphorus vapor. After -Br is replaced with -P, Ti3C2PBrx MXene shows an improved areal capacitance (360 mF cm-2) at 20 mV s-1 compared with Ti3C2Br2 MXene (102 mF cm-2). At a current density of 5 mA cm-2 after 10000 cycles, the capacitance retention of Ti3C2PBrx MXene has not decreased. The pseudocapacitive enhancement mechanism has been discovered based on the dual redox sites of the functional groups -P and Ti.

2.
Acta Biomater ; 179: 284-299, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38494084

RESUMO

Methicillin-resistant Staphylococcus aureus (MRSA) is the primary pathogenic agent responsible for epidermal wound infection and suppuration, seriously threatening the life and health of human beings. To address this fundamental challenge, we propose a heterojunction nanocomposite (Ca-CN/MnS) comprised of Ca-doped g-C3N4 and MnS for the therapy of MRSA-accompanied wounds. The Ca doping leads to a reduction in both the bandgap and the singlet state S1-triplet state T2 energy gap (ΔEST). The Ca doping also facilitates the two-photon excitation, thus remarkably promoting the separation and transfer of 808 nm near-infrared (NIR) light-triggered electron-hole pairs together with the built-in electric field. Thereby, the production of reactive oxygen species and heat are substantially augmented nearby the nanocomposite under 808 nm NIR light irradiation. Consequently, an impressive photocatalytic MRSA bactericidal efficiency of 99.98 ± 0.02 % is achieved following exposure to NIR light for 20 min. The introduction of biologically functional elements (Ca and Mn) can up-regulate proteins such as pyruvate kinase (PKM), L-lactate dehydrogenase (LDHA), and calcium/calmodulin-dependent protein kinase (CAMKII), trigger the glycolysis and calcium signaling pathway, promote cell proliferation, cellular metabolism, and angiogenesis, thereby expediting the wound-healing process. This heterojunction nanocomposite, with its precise charge-transfer pathway, represents a highly effective bactericidal and bioactive system for treating multidrug-resistant bacterial infections and accelerating tissue repair. STATEMENT OF SIGNIFICANCE: Due to the bacterial resistance, developing an antibiotic-free and highly effective bactericidal strategy to treat bacteria-infected wounds is critical. We have designed a heterojunction consisting of calcium doped g-C3N4 and MnS (Ca-CN/MnS) that can rapidly kill methicillin-resistant Staphylococcus aureus (MRSA) without damaging normal tissue through a synergistic effect of two-photon stimulated photothermal and photodynamic therapy. In addition, the release of trace amounts of biofunctional elements Mn and Ca triggers glycolysis and calcium signaling pathways that promote cellular metabolism and cell proliferation, contributing to tissue repair and wound healing.


Assuntos
Cálcio , Glicólise , Staphylococcus aureus Resistente à Meticilina , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Animais , Cálcio/metabolismo , Infecções Estafilocócicas/tratamento farmacológico , Fototerapia , Infecção dos Ferimentos/microbiologia , Infecção dos Ferimentos/patologia , Infecção dos Ferimentos/tratamento farmacológico , Humanos , Nanocompostos/química , Cicatrização/efeitos dos fármacos , Camundongos , Raios Infravermelhos
3.
Bioact Mater ; 37: 14-29, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515610

RESUMO

Multi-drug resistant bacterial infections pose a significant threat to human health. Thus, the development of effective bactericidal strategies is a pressing concern. In this study, a ternary heterostructure (Zn-CN/P-GO/BiS) comprised of Zn-doped graphite phase carbon nitride (g-C3N4), phosphorous-doped graphene oxide (GO) and bismuth sulphide (Bi2S3) is constructed for efficiently treating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound. Zn doping-induced defect sites in g-C3N4 results in a reduced band gap (ΔE) and a smaller energy gap (ΔEST) between the singlet state S1 and triplet state T1, which favours two-photon excitation and accelerates electron transfer. Furthermore, the formation of an internal electric field at the ternary heterogeneous interface optimizes the charge transfer pathway, inhibits the recombination of electron-hole pairs, improves the photodynamic effect of g-C3N4, and enhances its catalytic performance. Therefore, the Zn-CN/P-GO/BiS significantly augments the production of reactive oxygen species and heat under 808 nm NIR (0.67 W cm-2) irradiation, leading to the elimination of 99.60% ± 0.07% MRSA within 20 min. Additionally, the release of essential trace elements (Zn and P) promotes wound healing by activating hypoxia-inducible factor-1 (HIF-1) and peroxisome proliferator-activated receptors (PPAR) signaling pathways. This work provides unique insight into the rapid antibacterial applications of trace element doping and two-photon excitation.

4.
Nanomicro Lett ; 16(1): 161, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526682

RESUMO

With the merits of the high energy density of batteries and power density of supercapacitors, the aqueous Zn-ion hybrid supercapacitors emerge as a promising candidate for applications where both rapid energy delivery and moderate energy storage are required. However, the narrow electrochemical window of aqueous electrolytes induces severe side reactions on the Zn metal anode and shortens its lifespan. It also limits the operation voltage and energy density of the Zn-ion hybrid supercapacitors. Using 'water in salt' electrolytes can effectively broaden their electrochemical windows, but this is at the expense of high cost, low ionic conductivity, and narrow temperature compatibility, compromising the electrochemical performance of the Zn-ion hybrid supercapacitors. Thus, designing a new electrolyte to balance these factors towards high-performance Zn-ion hybrid supercapacitors is urgent and necessary. We developed a dilute water/acetonitrile electrolyte (0.5 m Zn(CF3SO3)2 + 1 m LiTFSI-H2O/AN) for Zn-ion hybrid supercapacitors, which simultaneously exhibited expanded electrochemical window, decent ionic conductivity, and broad temperature compatibility. In this electrolyte, the hydration shells and hydrogen bonds are significantly modulated by the acetonitrile and TFSI- anions. As a result, a Zn-ion hybrid supercapacitor with such an electrolyte demonstrates a high operating voltage up to 2.2 V and long lifespan beyond 120,000 cycles.

5.
ACS Nano ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38334266

RESUMO

Sodium-ion batteries (SIBs) are a promising electrochemical energy storage system; however, their practical application is hindered by the sluggish kinetics and interfacial instability of anode-active materials. Here, to circumvent these issues, we proposed the multiscale interface engineering of S-doped TiO2 electrodes with minor sulfur/carbon inlaying (S/C@sTiO2), where the electrode-electrolyte interface (SEI) and electrode-current collector interface (ECI) are tuned to improve the Na-storage performance. It is found that the S dopant greatly promotes the Na+ diffusion kinetics. Moreover, the ether electrolyte generates much less NaF in the cycled electrode, but relatively richer NaF in the SEI in comparison to fluoroethylene carbonate-contained ester electrolyte, leading to a thin (9 nm), stable, and kinetically favorable SEI film. More importantly, the minor sodium polysulfide intermediates chemically interact with the Cu current collector to form a Cu2S interface between the electrode and the Cu foil. The conductive tree root-like Cu2S ECI serves not only as active sites to boost the specific capacity but also as a 3D "second current collector" to reinforce the electrode and improve the Na+ reaction kinetics. The synergy of S-doping and optimized SEI and ECI realizes large specific capacity (464.4 mAh g-1 at 0.1 A g-1), ultrahigh rate capability (305.8 mAh g-1 at 50 A g-1), and ultrastable cycling performance (91.5% capacity retention after 3000 cycles at 5 A g-1). To the best of our knowledge, the overall SIB performances of S/C@sTiO2 are the best among all of the TiO2-based electrodes.

6.
Small ; : e2312280, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38312094

RESUMO

Antibiotics are frequently used to clinically treat osteomyelitis caused by bacterial infections. However, extended antibiotic use may result in drug resistance, which can be life threatening. Here, a heterojunction comprising Fe2 O3 /Fe3 S4 magnetic composite is constructed to achieve short-term and efficient treat osteomyelitis caused by methicillin-resistant Staphylococcus aureus (MRSA). The Fe2 O3 /Fe3 S4 composite exhibits powerful microwave (MW) absorption properties, thereby effectively converting incident electromagnetic energy into thermal energy. Density functional theory calculations demonstrate that Fe2 O3 /Fe3 S4 possesses significant charge accumulation and oxygen-fixing capacity at the heterogeneous interface, which provides more active sites and oxygen sources for trapping electromagnetic hotspots. The finite element analysis indicates that Fe2 O3 /Fe3 S4 displays a larger electromagnetism field enhancement parameter than Fe2 O3 owing to a significant increase in electromagnetic hotspots. These hotspots contribute to charge differential accumulation and depletion motions at the interface, thereby augmenting the release of free electrons that subsequently combine with the oxygen adsorbed by Fe2 O3 /Fe3 S4 to generate reactive oxygen species (ROS) and heat. This research, which achieves extraordinary bacterial eradication through the synergistic effect of microwave thermal therapy (MWTT) and microwave dynamic therapy (MDT), presents a novel strategy for treating deep-tissue bacterial infections.

7.
Brain Sci ; 14(2)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38391721

RESUMO

Shift work may adversely affect individuals' health, thus, the current study aimed to investigate the association between shift work and health outcomes in the general population. A total of 41,061 participants were included in this online cross-sectional survey, among which 9612 (23.4%) individuals engaged in shift work and 31,449 (76.6%) individuals engaged in non-shift work. Multiple logistic regression analyses were conducted to explore the association between shift work and health outcomes (psychiatric disorders, mental health symptoms, and physical disorders). In addition, associations between the duration (≤1 year, 1-3 years, 3-5 years, 5-10 years, ≥10 years) and frequency of shift work (<1 or ≥1 night/week) and health outcomes were also explored. The results showed that compared to non-shift workers, shift workers had a higher likelihood of any psychiatric disorders (odds ratios [OR] = 1.80, 95% CI = 1.56-2.09, p < 0.001), mental health symptoms (OR = 1.76, 95% CI = 1.68-1.85, p < 0.001), and physical disorders (OR = 1.48, 95% CI = 1.39-1.57, p < 0.001). In addition, inverted U-shaped associations were observed between the duration of shift work and health outcomes. These results indicated that shift work was closely related to potential links with poor health outcomes. The findings highlighted the importance of paying attention to the health conditions of shift workers and the necessity of implementing comprehensive protective measures for shift workers to reduce the impact of shift work.

8.
ACS Nano ; 18(5): 4539-4550, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38261792

RESUMO

Photocatalytic materials are some of the most promising substitutes for antibiotics. However, the antibacterial efficiency is still inhibited by the rapid recombination of the photogenerated carriers. Herein, we design a cationic covalent organic framework (COF), which has a symmetrical localized built-in electric field due to the induced polarization effect caused by the electron-transfer reaction between the Zn-porphyrin unit and the guanidinium unit. Density functional theory calculations indicate that there is a symmetrical electrophilic/nucleophilic region in the COF structure, which results from increased electron density around the Zn-porphyrin unit. The formed local electric field can further inhibit the recombination of photogenerated carriers by driving rapid electron transfer from Zn-porphyrin to guanidinium under light irradiation, which greatly increases the yield of reactive oxygen species. This COF wrapped by DSPE-PEG2000 can selectively target the lipoteichoic acid of Gram-positive bacteria by electrostatic interaction, which can be used for selective discrimination and imaging of bacteria. Furthermore, this nanoparticle can rapidly kill Gram-positive bacteria including 99.75% of Staphylococcus aureus and 99.77% of Enterococcus faecalis at an abnormally low concentration (2.00 ppm) under light irradiation for 20 min. This work will provide insight into designing photoresponsive COFs through engineering charge behavior.


Assuntos
Estruturas Metalorgânicas , Porfirinas , Antibacterianos/farmacologia , Bactérias , Guanidina , Íons , Estruturas Metalorgânicas/farmacologia , Zinco/química
9.
Small ; 20(9): e2306553, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37847896

RESUMO

Bacteria-induced epidemics and infectious diseases are seriously threatening the health of people around the world. In addition, antibiotic therapy has been inducing increasingly more serious bacterial resistance, which makes it urgent to develop new treatment strategies to combat bacteria, including multidrug-resistant bacteria. Natural extracts displaying antibacterial activity and good biocompatibility have attracted much attention due to greater concerns about the safety of synthetic chemicals and emerging drug resistance. These antibacterial components can be isolated and utilized as antimicrobials, as well as transformed, combined, or wrapped with other substances by using modern assistive technologies to fight bacteria synergistically. This review summarizes recent advances in natural extracts from three kinds of sources-plants, animals, and microorganisms-for antibacterial applications. This work discusses the corresponding antibacterial mechanisms and the future development of natural extracts in antibacterial fields.


Assuntos
Antibacterianos , Anti-Infecciosos , Animais , Humanos , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Bactérias , Farmacorresistência Bacteriana Múltipla
10.
Adv Mater ; 36(3): e2306589, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37703451

RESUMO

Distinct from common injuries, deep burns often require a chronic recovery cycle for healing and long-term antibiotic treatment to prevent infection. The rise of drug-resistant bacteria has caused antibiotics to no longer be perfect, and continuous drug use can easily lead to repeated infection and even death. Inspired by wild animals that chew plants to prevent wound infection, probiotic extracts with a structure similar to the tailspike of phage are obtained from Lactobacillus casei and combined with different flavones to design a series of nonantibiotic bactericides. These novel antibacterial agents are combined with a rapid gelation spray with a novel cross-angle layout to form an instant protection spray (IPS) and provide a physical and anti-infectious barrier for burns within 30 s. This IPS is able to sterilize 100.00% and 96.14% of multidrug-resistant Staphylococcus aureus (MRSA) in vitro and in vivo, respectively. In addition, it is found to effectively reduce inflammation in MRSA-infected burns in rats and to promote tissue healing.


Assuntos
Queimaduras , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecção dos Ferimentos , Ratos , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Antibacterianos/química , Staphylococcus aureus , Cicatrização , Infecções Estafilocócicas/tratamento farmacológico , Queimaduras/tratamento farmacológico , Queimaduras/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/prevenção & controle , Infecção dos Ferimentos/microbiologia
11.
J Colloid Interface Sci ; 656: 262-269, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995396

RESUMO

The exploration of efficient and stable noble-metal-free electrocatalysts for hydrogen evolution reaction (HER) is of great interest for the development of electrochemical hydrogen production technologies. Herein, nanoporous Ni-based catalyst with Mo and B co-addition (NiMoB) prepared by dealloying is reported as an efficient electrocatalysts for HER. The nanoporous NiMoB achieves an overpotential of 31 mV at 10 mA cm-2, along with exceptional catalytic stability in alkaline electrolyte. Density functional theory (DFT) calculations reveal that the incorporation of Mo and B can synergistically optimize the electronic structure and regulate the adsorption of HER intermediates on the Ni active site, thus accelerating the HER kinetics. This study provides a new perspective for the development of non-precious Ni-based catalysts towards efficient hydrogen energy conversion.

12.
Small ; : e2307406, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-38009734

RESUMO

Osteomyelitis caused by deep tissue infections is difficult to cure through phototherapy due to the poor penetration depth of the light. Herein, Cu/C/Fe3 O4 -COOH nanorod composites (Cu/C/Fe3 O4 -COOH) with nanoscale tip convex structures are successfully fabricated as a microwave-responsive smart bacteria-capture-killing vector. Cu/C/Fe3 O4 -COOH exhibited excellent magnetic targeting and bacteria-capturing ability due to its magnetism and high selectivity affinity to the amino groups on the surface of Staphylococcus aureus (S. aureus). Under microwave irradiation, Cu/C/Fe3 O4 -COOH efficiently treated S. aureus-infected osteomyelitis through the synergistic effects of microwave thermal therapy, microwave dynamic therapy, and copper ion therapy. It is calculated the electric field intensity in various regions of Cu/C/Fe3 O4 -COOH under microwave irradiation, demonstrating that it obtained the highest electric field intensity on the surface of copper nanoparticles of Cu/C/Fe3 O4 -COOH due to its high-curvature tips and metallic properties. This led to copper nanoparticles attracted more charged particles compared with other areas in Cu/C/Fe3 O4 -COOH. These charges are easier to escape from the high curvature surface of Cu/C/Fe3 O4 -COOH, and captured by adsorbed oxygen, resulting in the generation of reactive oxygen species. The Cu/C/Fe3 O4 -COOH designed in this study is expected to provide insight into the treatment of deep tissue infections under the irradiation of microwave.

13.
ACS Nano ; 17(21): 21018-21029, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37899553

RESUMO

Electron transfer plays an important role in various catalytic reactions and physiological activities, whose altered processes may change catalytic efficiency and interfere in physiological metabolic processes. In this study, we design an ultrasound (US)-activated piezoelectric responsive heterojunction (PCN-222-BTO, PCN: porous coordination network), which can change the electron transfer path at the abiotic and abiotic-biotic interfaces under US, thus achieving a rapid (15 min) and efficient bactericidal effect of 99.96%. US-induced polarization of BTO generates a built-in electric field, which promotes the electron transfer excited from PCN-222 to BTO at the PCN-222-BTO interface, thereby increasing the level of reactive oxygen species (ROS) production. Especially, we find that the biological electron transfer from the bacterial membrane to BTO is also activated at the MRSA-BTO interface. This antibacterial mode results in the down-regulated ribosomal, DNA and ATP synthesis related genes in MRSA, while the cell membrane and ion transport related genes are up-regulated due to the synergistic damage effect of ROS and disturbance of the bacterial electron transport chain. This US responsive dual-interface system shows an excellent therapeutic effect for the treatment of the MRSA-infected osteomyelitis model, which is superior to clinical vancomycin therapy.


Assuntos
Infecções Bacterianas , Elétrons , Humanos , Transporte de Elétrons , Espécies Reativas de Oxigênio , Ultrassonografia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico
14.
ACS Nano ; 17(18): 18200-18216, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37707356

RESUMO

Chronic osteomyelitis (COM), is a long-term, constant, and intractable disease mostly induced by infection from the invasion of Staphylococcus aureus (S. aureus) into bone cells. Here, we describe a highly effective microwave (MW) therapeutic strategy for S. aureus-induced COM based on the in situ growth of interfacial oxygen vacancy-rich molybdenum disulfide (MoS2)/titanium carbide (Ti3C2Tx) MXene with oxygen-deficient titanium dioxide (TiO2-x) on Ti3C2Tx (labeled as HU-MoS2/Ti3C2Tx) by producing reactive oxygen species (ROS) and heat. HU-MoS2/Ti3C2Tx produced heat and ROS, which could effectively treat S. aureus-induced COM under MW irradiation. The underlying mechanism determined by density functional theory (DFT) and MW vector network analysis was that HU-MoS2/Ti3C2Tx formed a high-energy local electric field under MW irradiation, consequently generating more high-energy free electrons to pass and move across the interface at a high speed and accelerate by the heterointerface, which enhanced the charge accumulation on both sides of the interface. Moreover, these charges were captured by the oxygen species adsorbed at the HU-MoS2/Ti3C2Tx interface to produce ROS. MoS2 facilitated multiple reflections and scattering of electromagnetic waves as well as enhanced impedance matching. Ti3C2Tx enhanced the conduction loss of electromagnetic waves, while functional groups induced dipole polarization to enhance attenuation of MW.


Assuntos
Micro-Ondas , Osteomielite , Humanos , Micro-Ondas/uso terapêutico , Staphylococcus aureus , Molibdênio , Espécies Reativas de Oxigênio , Osteomielite/terapia , Oxigênio
15.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 37(8): 937-944, 2023 Aug 15.
Artigo em Chinês | MEDLINE | ID: mdl-37586792

RESUMO

Objective: To design and construct a graphene oxide (GO)/silver nitrate (Ag3PO4)/chitosan (CS) composite coating for rapidly killing bacteria and preventing postoperative infection in implant surgery. Methods: GO/Ag3PO4 composites were prepared by ion exchange method, and CS and GO/Ag3PO4 composites were deposited on medical titanium (Ti) sheets successively. The morphology, physical image, photothermal and photocatalytic ability, antibacterial ability, and adhesion to the matrix of the materials were characterized. Results: The GO/Ag3PO4 composites were successfully prepared by ion exchange method and the heterogeneous structure of GO/Ag3PO4 was proved by morphology phase test. The heterogeneous structure formed by Ag3PO4 and GO reduced the band gap from 1.79 eV to 1.39 eV which could be excited by 808 nm near-infrared light. The photothermal and photocatalytic experiments proved that the GO/Ag3PO4/CS coating had excellent photothermal and photodynamic properties. In vitro antibacterial experiments showed that the antibacterial rate of the GO/Ag3PO4/CS composite coating against Staphylococcus aureus reached 99.81% after 20 minutes irradiation with 808 nm near-infrared light. At the same time, the composite coating had excellent light stability, which could provide stable and sustained antibacterial effect. Conclusion: GO/Ag3PO4/CS coating can be excited by 808 nm near infrared light to produce reactive oxygen species, which has excellent antibacterial activity under light.


Assuntos
Quitosana , Nitrato de Prata , Titânio , Antibacterianos/farmacologia , Corantes
16.
Adv Mater ; : e2306508, 2023 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-37594442

RESUMO

Aqueous batteries are promising alternatives to non-aqueous lithium-ion batteries due to their safety, environmental impact, and cost-effectiveness. However, their energy density is limited by the narrow electrochemical stability window (ESW) of water. The "Water-in-salts" (WIS) strategy is an effective method to broaden the ESW by reducing the "free water" in the electrolyte, but the drawbacks (high cost, high viscosity, poor low-temperature performance, etc.) also compromise these inherent superiorities. In this review, electrolyte and interphase engineering of aqueous batteries to overcome the drawbacks of the WIS strategy are summarized, including the developments of electrolytes, electrode-electrolyte interphases, and electrodes. First, the main challenges of aqueous batteries and the problems of the WIS strategy are comprehensively introduced. Second, the electrochemical functions of various electrolyte components (e.g., additives and solvents) are summarized and compared. Gel electrolytes are also investigated as a special form of electrolyte. Third, the formation and modification of the electrolyte-induced interphase on the electrode are discussed. Specifically, the modification and contribution of electrode materials toward improving the WIS strategy are also introduced. Finally, the challenges of aqueous batteries and the prospects of electrolyte and interphase engineering beyond the WIS strategy are outlined for the practical applications of aqueous batteries.

18.
Small ; 19(47): e2303484, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485572

RESUMO

The ability to effectively treat deep bacterial infections while promoting osteogenesis is the biggest treatment demand for diseases such as osteomyelitis. Microwave therapy is widely studied due to its remarkable ability to penetrate deep tissue. This paper focuses on the development of a microwave-responsive system, namely, a zinc ion (Zn2+ ) doped graphite carbon nitride (CN) system (BZCN), achieved through two high-temperature burning processes. By subjecting composite materials to microwave irradiation, an impressive 99.81% eradication of Staphylococcus aureus is observed within 15 min. Moreover, this treatment enhances the growth of bone marrow stromal cells. The Zn2+ doping effectively alters the electronic structure of CN, resulting in the generation of a substantial number of free electrons on the material's surface. Under microwave stimulation, sodium ions collide and ionize with the free electrons generated by BZCN, generating a large amount of energy, which reacts with water and oxygen, producing reactive oxygen species. In addition, Zn2+ doping improves the conductivity of CN and increases the number of unsaturated electrons. Under microwave irradiation, polar molecules undergo movement and generate frictional heat. Finally, the released Zn2+ promotes macrophages to polarize toward the M2 phenotype, which is beneficial for tibial repair.


Assuntos
Grafite , Osteomielite , Humanos , Grafite/química , Carbono , Micro-Ondas , Antibacterianos/farmacologia , Antibacterianos/química , Osteomielite/tratamento farmacológico
19.
Mol Psychiatry ; 28(10): 4056-4069, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37491461

RESUMO

The increasing number of coronavirus disease 2019 (COVID-19) infections have highlighted the long-term consequences of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection called long COVID. Although the concept and definition of long COVID are described differently across countries and institutions, there is general agreement that it affects multiple systems, including the immune, respiratory, cardiovascular, gastrointestinal, neuropsychological, musculoskeletal, and other systems. This review aims to provide a synthesis of published epidemiology, symptoms, and risk factors of long COVID. We also summarize potential pathophysiological mechanisms and biomarkers for precise prevention, early diagnosis, and accurate treatment of long COVID. Furthermore, we suggest evidence-based guidelines for the comprehensive evaluation and management of long COVID, involving treatment, health systems, health finance, public attitudes, and international cooperation, which is proposed to improve the treatment strategies, preventive measures, and public health policy making of long COVID.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Síndrome Pós-COVID-19 Aguda , Fatores de Risco
20.
ACS Nano ; 17(15): 14840-14851, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37493319

RESUMO

The rapid development of sonodynamic therapy (SDT) provides a promising strategy for treating deep-seated multidrug-resistant (MDR) bacterial infection. However, the extreme scarcity of biologically functional and highly efficient sonosensitizers severely limits the further clinical practice of SDT. Herein, the lattice-strain-rich Ti3C2 (LS-Ti3C2) with greatly improved sonosensitizing effect is one-step synthesized using Ti3C2 and meso-tetra(4-carboxyphenyl)porphine (TCPP) by the solvothermal method for realizing extraordinary SDT. The intervention of TCPP causes all the Ti-O chemical bonds and most of the Ti-F chemical bonds on the surface layer of Ti3C2 to break down. The amino groups of TCPP are then recombined with these exposed Ti atoms to perturb the order of the Ti atoms, resulting in displacement of the Ti atoms and final lattice structural distortion of Ti3C2. The inherent lattice strain narrows the band gap of Ti3C2, which mainly facilitates the electron-hole pair separation and electron transfer under ultrasound irradiation, thereby resulting in US-mediated reactive oxygen species (ROS) production and the subsequent robust bactericidal capability (99.77 ± 0.16%) against methicillin-resistant Staphylococcus aureus (MRSA). Overall, this research offers a perspective into the development of Ti-familial sonosensitizers toward SDT practice.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Terapia por Ultrassom , Titânio/farmacologia , Antibacterianos/farmacologia , Transporte de Elétrons , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...